z-logo
open-access-imgOpen Access
Linear phase retrieval with a single far-field image based on Zernike polynomials
Author(s) -
Min Li,
Xinyang Li
Publication year - 2009
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.17.015257
Subject(s) - zernike polynomials , phase retrieval , wavefront , optics , phase (matter) , noise (video) , algorithm , physics , computer science , image (mathematics) , fourier transform , computer vision , quantum mechanics
Wavefront aberrations can be represented accurately by a number of Zernike polynomials. We develop a method to retrieve small-phase aberrations from a single far-field image with a Zernike modal-based approach. The difference between a single measured image with aberration and a calibrated image with inherent aberration is used in the calculation process. In this paper, the principle of linear phase retrieval is introduced in a vector-matrix format, which is a kind of linear calculation and is suitable for real-time calculation. The results of numerical simulations on atmosphere-disturbed phase aberrations show that the proposed Zernike modal-based linear phase retrieval method works well when the rms of phase error is less than 1 rad, and it is valid in a noise condition when the signal-to-noise ratio (SNR) >3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom