
Quasi-distributed long-gauge fiber optic sensor system
Author(s) -
Matjaž Linec,
Denis Đonlagić
Publication year - 2009
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.17.011515
Subject(s) - optics , fiber optic sensor , optical fiber , optical path length , materials science , distributed acoustic sensing , polarization maintaining optical fiber , optical path , fiber optic splitter , sensitivity (control systems) , signal (programming language) , optoelectronics , physics , computer science , electronic engineering , engineering , programming language
This paper presents a quasi-distributed, long-gauge, sensor system for measurement optical path length variation. This system can be directly applied to long gauge strain and/or temperature sensing. The proposed sensor system is comprised of sensing fiber, which is divided into the sensor's segments separated by semi reflective mirrors made out of standard optical connectors. Short duration radio-frequency modulated optical bursts are launched into the sensing fiber and phase differences among individual reflected bursts are measured to determine the optical path-length variations among neighboring mirrors. Twenty sensing fiber segments were successfully addressed by a single-signal processor, while relying on standard telecommunication PIN diode, and a Fabry Perot laser diode. The resolution of a fiber-length variation better than 5 microm was demonstrated in practice. Since the long sections of fiber can be employed for constructing individual sensors within the sensor's array, a microstrain resolution can be achieved in practice. The drift of the sensor's system can be predominantly attributed to the temperature sensitivity of the electronic components, which proved to be below 20 microm/ degrees C. The entire system relies on simple and widely-used components that are low-cost.