z-logo
open-access-imgOpen Access
Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL)
Author(s) -
David J. M. Stothard,
J. Hopkins,
D. Burns,
M.H. Dunn
Publication year - 2009
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.17.010648
Subject(s) - materials science , optical parametric oscillator , optics , laser , disk laser , optoelectronics , laser power scaling , laser pumping , semiconductor laser theory , laser linewidth , optical pumping , laser diode , continuous wave , diode , physics
We report relaxation oscillation free, true continuous-wave operation of a singly-resonant, intracavity optical parametric oscillator (OPO) based upon periodically-poled, MgO-doped LiNbO3 and pumped internal to the cavity of a compact, optically-excited semiconductor disk laser (or VECSEL). The very short upper-laser-state lifetime of this laser gain medium, coupled with the enhancing effect of the high-finesse pump laser cavity in which the OPO is located, enables a low threshold, high efficiency intracavity device to be operated free of relaxation oscillations in continuous-wave mode. By optimizing for low-power operation, parametric threshold was achieved at a diode-laser power of only 1.4 W. At 8.5 W of diode-laser power, 205 mW of idler power was extracted, indicating a total down-converted power of 1.25 W, and hence a down-conversion efficiency of 83%.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom