
Ultra-broadband amplification properties of Ni^2+-doped glass-ceramics amplifiers
Author(s) -
Chun Jiang
Publication year - 2009
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.17.006759
Subject(s) - materials science , amplifier , optics , optical amplifier , rate equation , amplified spontaneous emission , spectral line , wavelength , gain , absorption (acoustics) , optoelectronics , active laser medium , physics , laser , cmos , quantum mechanics , astronomy , kinetics , laser power scaling
The energy level, transition configuration and mathematical model of Ni(2+)-doped glass-ceramics amplifiers are presented for the first time, to the best of one's knowledge. A quasi-three-level system is employed to model the gain and noise characteristics of the doped system, and the rate and power propagation equations of the mathematical model are solved to analyze the effect of the active ion concentration, fiber length, pump power as well as thermal-quenching on the gain spectra. It is shown that our model is in agreement with experimental result, and when excited at longer wavelength, the center of gain spectra of the amplifier red shifts, the ultra-broad band room-temperature gain spectra can cover 1.25-1.65 microm range for amplification of signal in the low-loss windows of the all-wave fiber without absorption peak caused by OH group.