
Compression of 200GHz DWDM channelized TDM pulsed carrier from optically modelocking WRC-FPLD Fiber Ring at 10 GHz
Author(s) -
YungSen Lin,
Guo-Hsuan Peng,
GongRu Lin
Publication year - 2009
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.17.005526
Subject(s) - laser linewidth , duty cycle , optics , wavelength division multiplexing , materials science , channelized , fiber laser , channel spacing , laser , optoelectronics , physics , telecommunications , computer science , wavelength , power (physics) , quantum mechanics
The compression of 200GHz DWDM channelized optically mode-locking WRC-FPLD fiber ring pulse of at 10 GHz is performed for high-capacity TDM application. To prevent temporal and spectral cross-talk, the duty-cycle of the DWDM channelized WRC-FPLD FL pulse needs to be shortened without broadening its linewidth. With dual-cavity configuration induced DWDM channelization, a shortest single-channel WRC-FPLD FL pulsewidth of 19 ps is generated, which can be linearly compensated to 10 ps and fifth-order soliton compressed to 1.4 ps. Under a maximum pulsewidth compression ratio up to 14 and a +/-100 m tolerance on compressing fiber length, the single-channel pulsewidth remains <2 ps (duty-cycle <2%) with spectral linewidth only broadening from 0.29 nm to 0.8 nm. In comparison, a typical SOAFL without intra-cavity TBF in fiber ring broadens its spectral linewidth from 2.4 to 3.8 nm after compressing its mode-locked pulsewidth from 21 to 2.1 ps. The duty-cycle of the DWDM channelized WRC-FPLD FL pulsed carrier is approaching 1% to satisfy at least 256 optical TDM channels.