z-logo
open-access-imgOpen Access
Sagnac secret sharing over telecom fiber networks
Author(s) -
Jan Bogdanski,
Johan Ahrens,
Mohamed Bourennane
Publication year - 2009
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.17.001055
Subject(s) - quantum information science , quantum network , quantum channel , physics , qubit , computer science , quantum key distribution , optics , telecommunications , photon , quantum information , quantum , quantum entanglement , quantum mechanics
We report the first Sagnac quantum secret sharing (in three-and four-party implementations) over 1550 nm single mode fiber (SMF) networks, using a single qubit protocol with phase encoding. Our secret sharing experiment has been based on a single qubit protocol, which has opened the door to practical secret sharing implementation over fiber telecom channels and in free-space. The previous quantum secret sharing proposals were based on multiparticle entangled states, difficult in the practical implementation and not scalable. Our experimental data in the three-party implementation show stable (in regards to birefringence drift) quantum secret sharing transmissions at the total Sagnac transmission loop distances of 55-75 km with the quantum bit error rates (QBER) of 2.3-2.4% for the mean photon number micro?= 0.1 and 1.7-2.1% for micro= 0.3. In the four-party case we have achieved quantum secret sharing transmissions at the total Sagnac transmission loop distances of 45-55 km with the quantum bit error rates (QBER) of 3.0-3.7% for the mean photon number micro= 0.1 and 1.8-3.0% for micro?= 0.3. The stability of quantum transmission has been achieved thanks to our new concept for compensation of SMF birefringence effects in Sagnac, based on a polarization control system and a polarization insensitive phase modulator. The measurement results have showed feasibility of quantum secret sharing over telecom fiber networks in Sagnac configuration, using standard fiber telecom components.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here