Imaging through turbid media based on wave transport model approach
Author(s) -
C. K. Aruldoss,
Ann Roberts
Publication year - 2008
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.021389
Subject(s) - optics , scattering , amplitude , phase (matter) , optical transfer function , forward scatter , spatial frequency , light scattering , intensity (physics) , physics , point spread function , image resolution , materials science , quantum mechanics
Here a transport model is used to simulate amplitude-only imaging and intensity-based quantitative phase imaging in a turbid medium. We derive an optical transfer function for propagation through a scattering medium. We also show that, as expected, scattering leads to a degradation in the spatial resolution in both forms of imaging, while the magnitude of the phase retrieved using a solution of the transport-of-intensity equation decreases as the optical density of the scattering medium increases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom