
High-frequency response of subwavelength-structured metals in the petahertz domain
Author(s) -
J. Weiner,
Frederico Nunes
Publication year - 2008
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.021256
Subject(s) - optics , dielectric , physics , dipole , plane wave , conductor , electromagnetic field , electromagnetic radiation , materials science , optoelectronics , quantum mechanics , composite material
Electromagnetic plane waves, incident on and reflecting from a dielectric-conductor interface, set up a standing wave in the dielectric with the B-field adjacent to the conductor. It is shown here how the harmonic time variation of this B-field induces an E-field and a conduction current J (c) within the skin depth of a real metal; and that at frequencies in the visible and near-infrared range, the imaginary term sigmai of the complex conductivity sigma = sigma(r) + isigma(i) dominates the optical response. Continuity conditions of the E-field through the surface together with the in-quadrature response of the conductivity determine the phase relation between the incident E-M field and J(c). If slits or grooves are milled into the metal surface, a displacement current in the dielectric gap and oscillating charge dipoles at the structure edges are established in quadrature phase with incident field. These dipoles radiate into the aperture and launch surface waves from the edges. They are the principle source of light transmission through the apertures.