Numerical simulation for meniscus shape and optical performance of a MEMS-based liquid micro-lens
Author(s) -
Shong-Leih Lee,
ChaoFu Yang
Publication year - 2008
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.019995
Subject(s) - electrowetting , optics , focal length , lens (geology) , meniscus , spherical aberration , numerical aperture , electric field , materials science , microelectromechanical systems , laplace's equation , aperture (computer memory) , physics , optoelectronics , acoustics , boundary value problem , dielectric , wavelength , incidence (geometry) , quantum mechanics
It is very difficult to fabricate tunable optical systems having an aperture below 1000 micrometers with the conventional means on macroscopic scale. Krogmann et al. (J. Opt. A 8, S330-S336, 2006) presented a MEMS-based tunable liquid micro-lens system with an aperture of 300 micrometers. The system exhibited a tuning range of back focal length between 2.3mm and infinity by using the electrowetting effect to change the contact angle of the meniscus shape on silicon with a voltage of 0-45 V. However, spherical aberration was found in their lens system. In the present study, a numerical simulation is performed for this same physical configuration by solving the Young-Laplace equation on the interface of the lens liquid and the surrounding liquid. The resulting meniscus shape produces a back focal length that agrees with the experimental observation excellently. To eliminate the spherical aberration, an electric field is applied on the lens. The electric field alters the Young-Laplace equation and thus changes the meniscus shape and the lens quality. The numerical result shows that the spherical aberration of the lens can be essentially eliminated when a proper electric field is applied.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom