z-logo
open-access-imgOpen Access
Organic photovoltaic cell in lateral-tandem configuration employing continuously-tuned microcavity sub-cells
Author(s) -
Changsoon Kim,
Jungsang Kim
Publication year - 2008
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.019987
Subject(s) - tandem , photovoltaic system , materials science , optics , organic solar cell , energy conversion efficiency , optoelectronics , resonance (particle physics) , wavelength , physics , ecology , particle physics , composite material , biology
We propose a lateral-tandem organic photovoltaic system consisting of a dispersive-focusing element and continuously-tuned, series-connected sub-cells. The proposed system overcomes the efficiency limitation of organic photovoltaic devices by spectral re-distribution of incoming solar photons and their delivery to the wavelength-matched, resonant sub-cells. By numerical simulations, we demonstrate that optical resonance in a microcavity sub-cell with a metal/organic multilayer/metal structure can be tuned over a broad spectrum by varying the thickness of the organic multilayer. We show that the power-conversion efficiency exceeding 18% can be obtained in a lateral-tandem system employing an ideal dispersive-focusing element and the microcavity sub-cells.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom