
Image restoration for fluorescence lifetime imaging microscopy (FLIM)
Author(s) -
Dhruv Sud,
Mary Ann Mycek
Publication year - 2008
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.019192
Subject(s) - image restoration , fluorescence lifetime imaging microscopy , image quality , optics , image resolution , microscopy , overlay , artificial intelligence , image processing , resolution (logic) , materials science , computer science , computer vision , fluorescence , image (mathematics) , physics , programming language
Computational image restoration finds wide applicability for fluorescence intensity imaging. Relatively little work in this regard has been performed on FLIM images, which also suffer from diminished spatial resolution. In this work, we report two separate approaches to enhance FLIM image quality while maintaining lifetime accuracy. A 2D-image restoration algorithm was employed to improve resolution in gated intensity images of various samples including fluorescent beads, living cells and fixed tissue samples. The restoration approach improved lifetime image quality without significant variation in lifetime. Further, overlaying a restored-intensity image over the native lifetime image provided even better results, where the resulting lifetime map had spatial features similar to the intensity map. 2D and 3D image restoration also benefit from advances in computational power and hence holds potential for enhancing FLIM resolution, particularly in ICCD-based wide-field FLIM systems, without sacrificing vital quantitative information.