
Single-longitudinal mode Nd:YVO_4 microchip laser with orthogonal-polarization bidirectional traveling-waves mode
Author(s) -
Yingjun Ma,
Li Ying Wu,
Hehui Wu,
Weimin Chen,
Yanli Wang,
Shushi Gu
Publication year - 2008
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.018702
Subject(s) - optics , longitudinal mode , materials science , birefringence , laser , polarization (electrochemistry) , single mode optical fiber , diode , optoelectronics , physics , chemistry
We present a single longitudinal mode, diode pumped Nd:YVO(4) microchip laser where a pair of quarter-wave plates (QWPs) sandwich Nd:YVO(4) and the principle axes of QWPs are oriented at 45 degrees to the c-axis of Nd:YVO(4). Three pieces of crystals were optically bonded together as a microchip without adhesive. Owing to large birefringence of Nd:YVO(4), two standing waves with orthogonal polarizations compensate their hole-burning effects with each other, which diminish total spatial hole-burning effects in Nd:YVO(4). The maximum pump power of greater than 25 times the threshold for single longitudinal mode operation has been theoretically shown and experimentally demonstrated. The power of output, slope efficiencies and temperature range of single longitudinal mode operation are greater than 730 mw (at 1.25 W pump), 60% and 30 degrees C, respectively.