Ultrahigh-Q Nanocavity with 1D Photonic Gap
Author(s) -
Masaya Notomi,
Eiichi Kuramochi,
Hideaki Taniyama
Publication year - 2008
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.011095
Subject(s) - optics , photonic crystal , wavelength , physics , lambda , photonics , optoelectronics , band gap , materials science
Recently, various wavelength-sized cavities with theoretical Q values of approximately 10(8) have been reported, however, they all employ 2D or 3D photonic band gaps to realize strong light confinement. Here we numerically demonstrate that ultrahigh-Q (2.0x10(8)) and wavelength-sized (V(eff) approximately 1.4(lambda/n)3) cavities can be achieved by employing only 1D periodicity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom