z-logo
open-access-imgOpen Access
Enhanced cooperative quantum cutting in Tm^3+- Yb^3+ codoped glass ceramics containing LaF_3 nanocrystals
Author(s) -
Song Ye,
Bin Zhu,
Jin Luo,
Jingxin Chen,
G. Lakshminarayana,
Jianrong Qiu
Publication year - 2008
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.008989
Subject(s) - materials science , nanocrystal , ceramic , photoluminescence , glass ceramic , doping , infrared , transmission electron microscopy , quantum efficiency , analytical chemistry (journal) , high resolution transmission electron microscopy , optics , nanotechnology , optoelectronics , composite material , chemistry , physics , chromatography
Tm(3+)-Yb(3+) codoped transparent oxyfluoride glass ceramics containing LaF(3) nanocrystals were obtained by thermal treatment on the as-made glasses. The formation of LaF(3) nanocrystals and the incorporation of Tm(3+) and Yb(3+) into LaF(3) nanocrystal lattice were confirmed by X-ray diffraction and high resolution transmission electron microscopy. Infrared quantum cutting involving Yb(3+) 950-1100 nm ((2)F(5/2)--> (2)F(7/2)) emission was achieved upon the excitation of the (1)G(4) energy level of Tm(3+) at 468 nm. We measured the photoluminescence properties of these glass ceramics. We also investigated the thermal treatment duration dependent quantum efficiency, and found that the quantum efficiency is 13% increased for the 0.5Tm(3+)-4Yb(3+) doped glass ceramic with a maximum value of 144%, and 16% increased for the 0.5Tm3+-8Yb3+ doped glass ceramic with a maximum value of 162%, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom