
Switching of polymer-stabilized vertical alignment liquid crystal cell
Author(s) -
Chi Yen Huang,
Wen Yi Jhuang,
Chia Ting Hsieh
Publication year - 2008
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.003859
Subject(s) - materials science , liquid crystal , polymer , transmittance , voltage , optics , optoelectronics , monomer , composite material , physics , quantum mechanics
This work investigates the switching characteristics of the polymer-stabilized vertical alignment (VA) liquid crystal (LC) cell. The experimental results reveal that the fall time of the cell declines as the monomer concentration increases because the vertically-aligned polymer networks accelerate the relaxation of the LC molecules. Furthermore, the formed polymer networks impede the growth and annihilation of LC defects, suppressing the optical bounce in the time dependent transmittance curve of the cell when the voltage is applied to the cell, substantially reducing the rise time of the cell. A step-voltage driving scheme is demonstrated to eliminate completely the optical bounce and hence improve further the rise time of the VA LC cell. The rise times of the pristine and the polymer-stabilized VA LC cells under the step-voltage driving scheme are less than 50% of those under the conventional driving scheme.