
Fractal analysis of self-mixing speckle signal in velocity sensing
Author(s) -
Daofu Han,
Ming Wang,
Junping Zhou
Publication year - 2008
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.16.003204
Subject(s) - speckle pattern , fractal , fractal analysis , optics , waveform , signal (programming language) , speckle noise , mixing (physics) , physics , fractal dimension , mathematics , computer science , mathematical analysis , quantum mechanics , voltage , programming language
A new method based on fractal theory is proposed to analyze velocity sensing. The waveform of a self-mixing speckle signal is processed as a pattern of a fractal. Fractal boxes are defined as a set of grids used to divide the fractal pattern, and box-counting (BC) is introduced to characterize the statistical property of a speckle signal. A group of simulated speckle signals are analyzed by calculating the BCs corresponding to different velocities of the object. A linear dependence between the BCs of speckle signals and velocities is obtained, the result of which is validated by the analysis of a group of signals obtained from experiments. The performance of the fractal analysis is compared with those of the previous analysis methods. Better linearity and higher measurement sensitivity of the fractal analysis are indicated. The experimental result shows that the fractal method can be used as a valid analysis tool for the self-mixing speckle signal in velocity sensing.