
SERS-based detection in an optofluidic ring resonator platform
Author(s) -
Ian M. White,
John Gohring,
Xudong Fan
Publication year - 2007
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.15.017433
Subject(s) - analyte , raman scattering , resonator , microfluidics , materials science , raman spectroscopy , optofluidics , surface enhanced raman spectroscopy , nanotechnology , biosensor , lab on a chip , detection limit , nanoclusters , optoelectronics , optics , chemistry , physics , chromatography
The development of surface enhanced Raman scattering (SERS) detection has made Raman spectroscopy relevant for highly sensitive labon- a-chip bio/chemical sensors. Despite the tremendous benefit in specificity that a Raman-based sensor can deliver, development of a lab-on-a- chip SERS tool has been limited thus far. In this work, we utilize an optofluidic ring resonator (OFRR) platform to develop a SERS-based detection tool with integrated microfluidics. The liquid core optical ring resonator (LCORR) serves both as the microfluidic sample delivery mechanism and as a ring resonator, exciting the metal nanoclusters and target analytes as they pass through the channel. Using this OFRR approach and R6G as the analyte, we have achieved a measured detection limit of 400 pM. The measured Raman signal in this case is likely generated by only a few hundred R6G molecules, which foreshadows the development of a SERS-based lab-on-a-chip bio/chemical sensor capable of detecting a low number of target analyte molecules.