
Modeling and measurement of losses in silicon-on-insulator resonators and bends
Author(s) -
Shaoping Xiao,
Maroof H. Khan,
Hao Shen,
Minghao Qi
Publication year - 2007
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.15.010553
Subject(s) - bend radius , resonator , silicon on insulator , optics , materials science , free spectral range , radius , drop (telecommunication) , extinction ratio , insertion loss , return loss , coupling loss , silicon , bending , optoelectronics , optical fiber , physics , wavelength , antenna (radio) , electrical engineering , composite material , computer security , computer science , engineering
We present an analytical model to quantify losses in resonators and bends without uncertain contributions from fiber coupling in/out or waveguide cleavage facets. With resonators in add-drop configuration, intrinsic losses are calculated from the free spectral range, through-port extinction and drop-port bandwidth. We fabricated and characterized silicon-on-insulator resonator for loss analysis. At 1.55 mum, racetrack resonators with a bending radius of 4.5 mum show intrinsic losses as small as 0.14+/-0.014 dB/round-trip. Meanwhile, intrinsic losses increase up to 1.23 dB/round-trip in the racetrack resonator that has a bending radius of 2.25 mum. Losses in a 180 degrees bend are estimated as a half of the intrinsic losses in these racetrack resonators, i.e., 0.07+/-0.007 dB/turn for a bending radius of 4.5 mum and 0.62 dB/turn for a bending radius of 2.25 mum. Loss in a 90 degrees bend with a radius of 4.5 mum is determined to be 0.06+/-0.006 dB/turn at 1.55 mum. The losses in 180 degrees or 90 degrees bends are found to be mainly due to the transition loss between waveguide bends and straight waveguides.