
Accurate BER evaluation for lumped DPSK and OOK systems with PMD and PDL
Author(s) -
Zhongxi Zhang,
Liang Chen,
Xiaoyi Bao
Publication year - 2007
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.15.009418
Subject(s) - polarization mode dispersion , keying , bit error rate , optics , phase shift keying , physics , optical communication , differential phase , binary number , computer science , telecommunications , electronic engineering , mathematics , optical fiber , decoding methods , engineering , arithmetic
New forms using Dirac bra-ket notations and their transformations to express electrically filtered currents are presented for optical systems using either binary differential phase-shift keying (2-DPSK) or ON-OFF keying (OOK) with lumped first-order PMD and PDL, arbitrary optical and electrical filtering and pulse shaping. Based on these forms, the moment generating functions (MGFs) and bit-error-ratios (BERs) for different systems are obtained. Our results show that, for a given BER, 2-DPSK requires ~ 5dB lower input signal-to-noise ratio than OOK. By comparing BERs for different polarization systems, we also show that the PDL-induced partially polarized noise can significantly improve system performance and reduce BER variation caused by the random couplings between signal polarization, PDL and PMD vectors.