
Heterodyne two beam Gaussian microscope interferometer
Author(s) -
J. Mauricio Flores,
Moisés Cywiak,
Manuel Servı́n,
Lorenzo Juárez P.
Publication year - 2007
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.15.008346
Subject(s) - optics , interferometry , photodetector , physics , microscope , beam (structure) , light beam , diffraction , beam splitter , grating , light intensity , materials science , signal (programming language) , amplifier , gaussian beam , laser , optoelectronics , cmos , computer science , programming language
We present a novel microscope interferometric technique based on the heterodinization of two Gaussian beams for measuring roughness of optical surfaces in microscopic areas. One of the beams is used as a probe beam, focussed and reflected by the surface under test. The second beam interferes with the first beam and introduces a time varying modulating signal. The modulating light beam is obtained from the first diffraction order of a Bragg cell. The two beams are superimposed and added coherently at the sensitive plane of a photodetector that integrates the overall intensity of the beams. We show analytically that it is possible to find appropriate working conditions in which the system has a linear response. Under these conditions, the size of the probe beam at the plane of detection as well as the amplitude of the time varying signal at the output of the photodetector, are both proportional to the local vertical height of the surface under test. As a narrow bandwidth amplifier is used to detect the time varying signal the system exhibits a high signal to noise ratio. We also include experimental results of the measurement of the topography of a sample consisting in a blazed-reflecting grating.