
Optimization of pump spectra for gain-flattened photonic crystal fiber Raman amplifiers operating in C-band
Author(s) -
Kazuya Sasaki,
Shailendra K. Varshney,
Kazumi Wada,
Kunimasa Saitoh,
Masanori Koshiba
Publication year - 2007
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.15.002654
Subject(s) - materials science , optics , ripple , photonic crystal fiber , dispersion (optics) , raman spectroscopy , wavelength , optoelectronics , physics , quantum mechanics , voltage
This paper focuses on the optimization of pump spectra to achieve low Raman gain ripples over C-band in ultra-low loss photonic crystal fiber (PCF) and dispersion compensating PCFs (DCPCFs). Genetic algorithm (GA), a multivariate stochastic optimization algorithm, is applied to optimize the pump powers and the wavelengths for the aforesaid fiber designs. In addition, the GA integrated with full-vectorial finite element method with curvilinear edge/nodal elements is used to optimize the structural parameters of DCPCF. The optimized DCPCF provides broadband dispersion compensation over C-band with low negative dispersion coefficient of -530 ps/nm/km at 1550 nm, which is five times larger than the conventional dispersion compensating fibers with nearly equal effective mode area (21.7 mum(2)). A peak gain of 8.4 dB with +/-0.21 dB gain ripple is achieved for a 2.73 km long DCPCF module when three optimized pumps are used in the backward direction. The lowest gain ripple of +/-0.36 dB is attained for a 10 km long ultra-low loss PCF with three backward pumps. Sensitivity analysis has been performed and it is found that within the experimental fabrication tolerances of +/-2%, the absolute magnitude of dispersion may vary by +/-16%, while the Raman gain may change by +/-7%. Through tolerance study, it is examined that the ring core's hole-size is more sensitive to the structural deformations.