
Radiation loss of a nanotaper: Singular Gaussian beam model
Author(s) -
M. Sumetsky
Publication year - 2007
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.15.001480
Subject(s) - physics , optics , adiabatic process , gaussian beam , singularity , beam (structure) , quantum mechanics , geometry , mathematics
This paper presents a model of a subwavelength diameter adiabatic microfiber taper (nanotaper), which allows an asymptotically accurate solution of the wave equation. The evanescent field near the nanotaper is expressed through a Gaussian beam having a singularity at the nanotaper axis. For certain values of parameters of the nanotaper, when it has a swell in the middle and narrows down to zero at the infinity, the nanotaper is lossless. For other values, when the nanotaper has a biconical shape, it exhibits an exponentially small radiation loss, which is determined as a tunneling rate through an effective parabolic potential barrier. The latter case represents an exceptional example of the radiation loss being distributed along the length of an adiabatic nanotaper rather than being localized near focal circumferences in the evanescent field region.