
Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography
Author(s) -
Manuel De la Torre-Ibarra,
Pablo D. Ruiz,
Jonathan M. Huntley
Publication year - 2006
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.14.009643
Subject(s) - optics , optical coherence tomography , interferometry , materials science , displacement (psychology) , phase (matter) , physics , psychology , quantum mechanics , psychotherapist
We describe a system for measuring sub-surface displacement fields within a scattering medium using a phase contrast version of spectral Optical Coherence Tomography. The system provides displacement maps within a 2-D slice extending into the sample with a sensitivity of order 10 nm. The data for a given deformation state is recorded in a single image, potentially allowing sub-surface displacement and strain mapping of moving targets. The system is based on low cost components and has no moving parts. The theoretical basis for the system is presented along with experimental results from a simple well-controlled geometry consisting of independently-tilting glass sheets. Results are validated using standard two-beam interferometry. A modified system was used to measure through-the-thickness phase changes within a porcine cornea due to displacements produced by an increase in the intraocular pressure.