z-logo
open-access-imgOpen Access
Optical projection display systems integrated with three-color-mixing waveguides and grating-light-valve devices
Author(s) -
Jimmy Kuo,
HuiWen Wu,
GwoBin Lee
Publication year - 2006
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.14.006844
Subject(s) - optics , grating , materials science , waveguide , lens (geology) , optoelectronics , diffraction grating , planar , physics , computer science , computer graphics (images)
An integrated optical projection display technique utilizing three-color-mixing waveguides and grating-light-valve devices is demonstrated. This new projection display system comprises an optical lens, a microscanner, a grating light valve, and a 3x1 planar waveguide device. The planar waveguide device is fabricated using a SU-8 negative photoresist process, which is suitable material for rapid prototyping of integrated optical circuits. It works as a three-color-mixer and is successfully used for color image generation. The intensity of color for each pixel in the display picture is tuned by groups of movable ribbons comprising a grating light valve and image generating diffraction gratings. This study also demonstrates a surface-micromachined optical scanner using four stress-actuated polysilicon plates to raise a horizontal mirror. The electrostatically driven mirror can be used for scanning projection display applications. Experimental data show that the optical scanner has a mirror scanning angle up to +/-15(o) using an operating voltage of 25 V. A sub-millisecond switching time (<900 mus) and an optical insertion loss of 0.85 dB is achieved for multi-mode waveguides. The development of the proposed integrated optical system could be promising for an image generation system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here