z-logo
open-access-imgOpen Access
Improving resolution in imaging through obscuring media with early-time diffusion signals
Author(s) -
E. Bleszyński,
M. Błeszyński,
T. Jaroszewicz
Publication year - 2021
Publication title -
journal of the optical society of america. a, optics, image science, and vision./journal of the optical society of america. a, online
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.803
H-Index - 158
eISSN - 1520-8532
pISSN - 1084-7529
DOI - 10.1364/josaa.417810
Subject(s) - deconvolution , point spread function , optics , radiative transfer , scattering , diffusion , physics , image resolution , resolution (logic) , wavelength , reflection (computer programming) , computational physics , computer science , artificial intelligence , thermodynamics , programming language
A short pulse propagating through a medium consisting of randomly distributed scatterers, large compared to the wavelength, is expected to develop an "early-time diffusion" (ETD) behavior: a sharply rising structure in the time-resolved intensity, immediately following the coherent (ballistic) component. Since the ETD signal is attenuated at a rate substantially lower than the coherent wave, it offers a possibility of application in imaging through diverse scattering media, such as atmospheric obscurants (clouds, fog, mist), dust, aerosols, fuel sprays, or biological tissues. We describe here a two-way (reflection) imaging scenario utilizing the ETD phenomenon, and propose a specific image formation technique. We evaluate, by using the radiative transport theory, the resulting point-spread function (PSF) characterizing the image resolution. We show that the directly formed image has an angular resolution comparable to the width of the forward peak in the ensemble-averaged scattering cross section of the medium constituents. Subsequently, we show that, through the application of a regularized deconvolution technique enhancing higher Fourier components of the PSF, the resolution can be further significantly improved-at least by a factor of ${\sim}4$ for a medium layer of optical thickness of the order of 20. Such an improvement can be reached even if the noise level is a few orders of magnitude higher than the coherent (ballistic) image component.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here