
Markov–Airy description of optical scattering, waveguides, and resonators
Author(s) -
Thomas C. Galvin,
J. G. Eden
Publication year - 2019
Publication title -
journal of the optical society of america. a, optics, image science, and vision./journal of the optical society of america. a, online
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.803
H-Index - 158
eISSN - 1520-8532
pISSN - 1084-7529
DOI - 10.1364/josaa.36.000898
Subject(s) - markov chain , optics , resonator , dielectric , scattering , markov process , physics , materials science , computer science , mathematics , optoelectronics , statistics , machine learning
Representing the reflection and transmission of light by multilayer dielectric structures in terms of Markov chains provides an intuitive, precise, and computationally efficient framework for calculating the dispersive properties (group delay, group delay dispersion, and higher order phase derivatives) of ultrafast laser mirrors and other broadband optical components. The theoretical basis for the Markov-Airy formalism is described, and its ability to precisely determine the dispersive characteristics of multilayer dielectric structures is demonstrated here. Exact expressions for the three lowest order phase derivatives for a dielectric mirror and waveguide are derived, and Markov-Airy-based numerical simulations of specific mirror designs are compared with results obtained with the conventional transition matrix formalism.