
Iterative design of multilayered dielectric microspheres with tunable transparency windows
Author(s) -
Nicholas J. Hudak,
Benjamin S. Garrett,
Brendan G. DeLacy,
Mark S. Mirotznik
Publication year - 2019
Publication title -
journal of the optical society of america. a, optics, image science, and vision./journal of the optical society of america. a, online
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.803
H-Index - 158
eISSN - 1520-8532
pISSN - 1084-7529
DOI - 10.1364/josaa.36.000705
Subject(s) - mie scattering , dielectric , materials science , transparency (behavior) , optics , solver , iterative method , scattering , optimal design , light scattering , optoelectronics , computer science , physics , algorithm , computer security , machine learning , programming language
Suspensions of microparticles dispersed in air or liquids are useful for designing media with desirable optical extinction properties within the visible or infrared spectrum. We describe here a numerical iterative optimization algorithm used to design multilayered concentric dielectric spheres with prescribed optical scattering properties. Our method integrates a computationally efficient rigorous electromagnetic solver, based on Mie theory, within an optimization loop to determine specific particle configurations that best meet a desired optical response. In particular, we show that this method can be used to design all-dielectric spherical particles that possess narrow tunable transparency windows while removing any angular dependency on the optical response.