
Synthetic aperture radar with dynamic metasurface antennas: a conceptual development
Author(s) -
Michael Boyarsky,
Timothy Sleasman,
Laura Pulido-Mancera,
Thomas Fromentèze,
Andreas Pedross-Engel,
Claire M. Watts,
Mohammadreza F. Imani,
Matthew S. Reynolds,
David R. Smith
Publication year - 2017
Publication title -
journal of the optical society of america. a, optics, image science, and vision./journal of the optical society of america. a, online
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.803
H-Index - 158
eISSN - 1520-8532
pISSN - 1084-7529
DOI - 10.1364/josaa.34.000a22
Subject(s) - computer science , synthetic aperture radar , radar , phased array , remote sensing , radar imaging , inverse synthetic aperture radar , computer vision , antenna (radio) , telecommunications , geology
We investigate the application of dynamic metasurface antennas (DMAs) to synthetic aperture radar (SAR) systems. Metasurface antennas can generate a multitude of tailored electromagnetic waveforms from a physical platform that is low-cost, lightweight, and planar; these characteristics are not readily available with traditional SAR technologies, such as phased arrays and mechanically steered systems. We show that electronically tuned DMAs can generate steerable, directive beams for traditional stripmap and spotlight SAR imaging modes. This capability eliminates the need for mechanical gimbals and phase shifters, simplifying the hardware architecture of a SAR system. Additionally, we discuss alternative imaging modalities, including enhanced resolution stripmap and diverse pattern stripmap, which can achieve resolution on par with spotlight, while maintaining a large region-of-interest, as possible with stripmap. Further consideration is given to strategies for integrating metasurfaces with chirped pulse RF sources. DMAs are poised to propel SAR systems forward by offering a vast range of capabilities from a significantly improved physical platform.