
Extended Taylor frozen-flow hypothesis and statistics of optical phase in aero-optics
Author(s) -
Sudhakar Prasad
Publication year - 2017
Publication title -
journal of the optical society of america. a, optics, image science, and vision./journal of the optical society of america. a, online
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.803
H-Index - 158
eISSN - 1520-8532
pISSN - 1084-7529
DOI - 10.1364/josaa.34.000931
Subject(s) - turbulence , optics , physics , refractive index , spectral density , context (archaeology) , refraction , flow (mathematics) , phase (matter) , mechanics , statistics , mathematics , geology , paleontology , quantum mechanics
We present an extended Taylor frozen-flow model for the statistics of the spatiotemporal disturbances of the index of refraction of air and the phase of an optical beam propagated through the turbulent boundary and shear layers in a high-Reynolds-number flow. By incorporating rapid random fluctuations of the flow velocity about a mean convection velocity and an anisotropic spatial power spectrum for the index of refraction, we calculate both the short-delay temporal structure function and the power spectral density of these disturbances. We discuss the predicted scaling behaviors for these quantities in the context of existing experimental observations, showing specifically the agreement of these predictions with some optical phase data obtained by the Airborne Aero-Optical Laboratory.