
Motion-resolved quantitative phase imaging
Author(s) -
Michael Kellman,
Michael Chen,
Zachary F. Phillips,
Michael Lustig,
Laura Waller
Publication year - 2018
Publication title -
biomedical optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.9.005456
Subject(s) - computer vision , computer science , artificial intelligence , phase (matter) , temporal resolution , motion (physics) , phase imaging , sample (material) , motion estimation , image resolution , optics , physics , microscopy , quantum mechanics , thermodynamics
The temporal resolution of quantitative phase imaging with Differential Phase Contrast (DPC) is limited by the requirement for multiple illumination-encoded measurements. This inhibits imaging of fast-moving samples. We present a computational approach to model and correct for non-rigid sample motion during the DPC acquisition in order to improve temporal resolution to that of a single-shot method and enable imaging of motion dynamics at the framerate of the sensor. Our method relies on the addition of a simultaneously-acquired color-multiplexed reference signal to enable non-rigid registration of measurements prior to phase retrieval. We show experimental results where we reduce motion blur from fast-moving live biological samples.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom