
Standard-unit measurement of cellular viability using dynamic light scattering optical coherence microscopy
Author(s) -
Julia S. Lee,
Kyungsik Eom,
Collin Polucha,
JongHwan Lee
Publication year - 2018
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.9.005227
Subject(s) - dynamic light scattering , light scattering , confocal microscopy , microscopy , materials science , optics , optical coherence tomography , fluorescence correlation spectroscopy , biophysics , scattering , fluorescence , physics , nanotechnology , biology , nanoparticle
Dynamic light scattering optical coherence microscopy (DLS-OCM) integrates DLS, which measures diffusion or flow of particles by analyzing fluctuations in light scattered by the particles, and OCM, which achieves single-cell resolution by combining coherence and confocal gating, integratively enabling cellular-resolution 3D mapping of the diffusion coefficient, and flow velocity. The diffusion coefficient mapping has a potential for the non-destructive measurement of cellular viability in the standard unit but has not been validated yet. Here, we present DLS-OCM imaging of intra-cellular motility (ICM) as a surrogate of cellular viability. For this purpose, we have simultaneously obtained and compared ICM-contrast DLS-OCM images and calcium fluorescence-contrast images of retinal ganglion cells, and then characterized the responses of the measured ICM to a change in cellular viability induced by environmental conditions such as temperature and pH. The diffusion-coefficient-represented ICM exhibits consistent changes with the manipulated cellular viability.