
Use of a DPSS Er:YAG laser for the selective removal of composite from tooth surfaces
Author(s) -
William Fried,
Kenneth H. Chan,
Cynthia L. Darling,
Daniel Fried
Publication year - 2018
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.9.005026
Subject(s) - er:yag laser , materials science , composite number , laser , enamel paint , fluence , ablation , dentin , dental composite , optics , composite material , diode , laser ablation , optoelectronics , medicine , physics
New diode-pumped solid state (DPSS) Er:YAG lasers have become available operating at high pulse repetition rates. These lasers are ideally suited for integration with laser scanning systems for the selective removal of dental decay and composite restorative materials from tooth surfaces. The purpose of this study was to determine if a DPSS Er:YAG laser system is suitable for the selective removal of composite from tooth surfaces. Relative ablation rates of composite and enamel were determined and composite was removed from tooth surfaces using a DPSS Er:YAG laser. Composite was removed very rapidly with ablation rates approaching 50-µm per pulse. A fluence of ~50 J/cm 2 appeared optimal for the removal of composite and damage to the enamel was limited to less than 100-µm after the removal of composite as thick as 700-800-µm; however, dentin is removed at similar rates to composite. The DPSS Er:YAG laser appears to be better suited for the removal of composite than conventional flash-lamp pumped Er:YAG lasers since composite is ablated at higher rates than dental enamel and the high pulse repetition rates enable greater selectivity while maintaining high removal rates.