
Decoding cortical brain states from widefield calcium imaging data using visibility graph
Author(s) -
Li Zhu,
Christian R. Lee,
David J. Margolis,
Laleh Najafizadeh
Publication year - 2018
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.9.003017
Subject(s) - calcium imaging , neuroscience , whisking in animals , calcium , computer science , decoding methods , graph , visibility , artificial intelligence , biology , physics , somatosensory system , chemistry , optics , algorithm , organic chemistry , theoretical computer science
Widefield optical imaging of neuronal populations over large portions of the cerebral cortex in awake behaving animals provides a unique opportunity for investigating the relationship between brain function and behavior. In this paper, we demonstrate that the temporal characteristics of calcium dynamics obtained through widefield imaging can be utilized to infer the corresponding behavior. Cortical activity in transgenic calcium reporter mice (n=6) expressing GCaMP6f in neocortical pyramidal neurons is recorded during active whisking (AW) and no whisking (NW). To extract features related to the temporal characteristics of calcium recordings, a method based on visibility graph (VG) is introduced. An extensive study considering different choices of features and classifiers is conducted to find the best model capable of predicting AW and NW from calcium recordings. Our experimental results show that temporal characteristics of calcium recordings identified by the proposed method carry discriminatory information that are powerful enough for decoding behavior.