z-logo
open-access-imgOpen Access
Bounded Kalman filter method for motion-robust, non-contact heart rate estimation
Author(s) -
Sakthi Kumar Arul Prakash,
Conrad S. Tucker
Publication year - 2018
Publication title -
biomedical optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.9.000873
Subject(s) - computer science , computer vision , kalman filter , artificial intelligence , frame rate , motion estimation
The authors of this work present a real-time measurement of heart rate across different lighting conditions and motion categories. This is an advancement over existing remote Photo Plethysmography (rPPG) methods that require a static, controlled environment for heart rate detection, making them impractical for real-world scenarios wherein a patient may be in motion, or remotely connected to a healthcare provider through telehealth technologies. The algorithm aims to minimize motion artifacts such as blurring and noise due to head movements (uniform, random) by employing i) a blur identification and denoising algorithm for each frame and ii) a bounded Kalman filter technique for motion estimation and feature tracking. A case study is presented that demonstrates the feasibility of the algorithm in non-contact estimation of the pulse rate of subjects performing everyday head and body movements. The method in this paper outperforms state of the art rPPG methods in heart rate detection, as revealed by the benchmarked results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here