z-logo
open-access-imgOpen Access
Common-path phase-sensitive optical coherence tomography provides enhanced phase stability and detection sensitivity for dynamic elastography
Author(s) -
Gongpu Lan,
Manmohan Singh,
Kirill V. Larin,
Michael D. Twa
Publication year - 2017
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.8.005253
Subject(s) - optical coherence tomography , elastography , materials science , sensitivity (control systems) , optics , phase (matter) , displacement (psychology) , dynamic range , optical path length , optical path , coherence (philosophical gambling strategy) , biomedical engineering , ultrasound , acoustics , physics , medicine , electronic engineering , psychology , quantum mechanics , psychotherapist , engineering
Phase-sensitive optical coherence elastography (PhS-OCE) is an emerging optical technique to quantify soft-tissue biomechanical properties. We implemented a common-path OCT design to enhance displacement sensitivity and optical phase stability for dynamic elastography imaging. The background phase stability was greater in common-path PhS-OCE (0.24 ± 0.07nm) than conventional PhS-OCE (1.60 ± 0.11μm). The coefficient of variation for surface displacement measurements using conventional PhS-OCE averaged 11% versus 2% for common-path PhS-OCE. Young's modulus estimates showed good precision (95% CIs) for tissue phantoms: 24.96 ± 2.18kPa (1% agar), 49.69 ± 4.87kPa (1.5% agar), and 116.08 ± 12.14kPa (2% agar), respectively. Common-path PhS-OCE effectively reduced the amplitude of background dynamic optical phase instability to a sub-nanometer level, which provided a larger dynamic detection range and higher detection sensitivity for surface displacement measurements than conventional PhS-OCE.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom