z-logo
open-access-imgOpen Access
In vivo assessment of optical properties of basal cell carcinoma and differentiation of BCC subtypes by high-definition optical coherence tomography
Author(s) -
Marc Boone,
Mariano Suppa,
Makiko Miyamoto,
Alice Marneffe,
Gregor B. E. Jemec,
V. del Mármol
Publication year - 2016
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.7.002269
Subject(s) - reticular dermis , optical coherence tomography , basal cell carcinoma , in vivo , papillary dermis , dermis , reticular connective tissue , epidermis (zoology) , pathology , basal cell , chemistry , medicine , anatomy , biology , radiology , microbiology and biotechnology
High-definition optical coherence tomography (HD-OCT) features of basal cell carcinoma (BCC) have recently been defined. We assessed in vivo optical properties (IV-OP) of BCC, by HD-OCT. Moreover their critical values for BCC subtype differentiation were determined. The technique of semi-log plot whereby an exponential function becomes linear has been implemented on HD-OCT signals. The relative attenuation factor (µraf ) at different skin layers could be assessed.. IV-OP of superficial BCC with high diagnostic accuracy (DA) and high negative predictive values (NPV) were (i) decreased µraf in lower part of epidermis and (ii) increased epidermal thickness (E-T). IV-OP of nodular BCC with good to high DA and NPV were (i) less negative µraf in papillary dermis compared to normal adjacent skin and (ii) significantly decreased E-T and papillary dermal thickness (PD-T). In infiltrative BCC (i) high µraf in reticular dermis compared to normal adjacent skin and (ii) presence of peaks and falls in reticular dermis had good DA and high NPV. HD-OCT seems to enable the combination of in vivo morphological analysis of cellular and 3-D micro-architectural structures with IV-OP analysis of BCC. This permits BCC sub-differentiation with higher accuracy than in vivo HD-OCT analysis of morphology alone.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom