z-logo
open-access-imgOpen Access
Rapid three-dimensional quantification of voxel-wise collagen fiber orientation
Author(s) -
Zhiyi Liu,
Kyle P. Quinn,
Lucía Speroni,
Lisa M. Arendt,
Charlotte Kuperwasser,
Carlos Sonnenschein,
Ana M. Soto,
Irene Georgakoudi
Publication year - 2015
Publication title -
biomedical optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.6.002294
Subject(s) - voxel , orientation (vector space) , computer science , artificial intelligence , pattern recognition (psychology) , fiber , stack (abstract data type) , computer vision , generalization , materials science , mathematics , geometry , mathematical analysis , composite material , programming language
Defining fiber orientation at each voxel within a 3D biomedical image stack is potentially useful for a variety of applications, including cancer, wound healing and tissue regeneration. Current methods are typically computationally intensive or inaccurate. Herein, we present a 3D weighted orientation vector summation algorithm, which is a generalization of a previously reported 2D vector summation technique aimed at quantifying collagen fiber orientations simultaneously at each voxel of an image stack. As a result, voxel-wise fiber orientation information with 4° to 5° accuracy can be determined, and the computational time required to analyze a typical stack with the size of 512x512x100 voxels is less than 5 min. Thus, this technique enables the practical extraction of voxel-specific orientation data for characterizing structural anisotropy in 3D specimens. As examples, we use this approach to characterize the fiber organization in an excised mouse mammary gland and a 3D breast tissue model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom