z-logo
open-access-imgOpen Access
Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications
Author(s) -
Jungdae Kim,
Yong-Gu Lee
Publication year - 2014
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.5.002471
Subject(s) - optical tweezers , materials science , trapping , biosensor , optics , tweezers , laser , optoelectronics , nanotechnology , physics , ecology , biology
Conventional optical trapping using a tightly focused beam is not suitable for trapping particles that are smaller than the diffraction limit because of the increasing need of the incident laser power that could produce permanent thermal damages. One of the current solutions to this problem is to intensify the local field enhancement by using nanoplasmonic structures without increasing the laser power. Nanoplasmonic tweezers have been used for various small molecules but there is no known report of trapping a single DNA molecule. In this paper, we present the trapping of a single DNA molecule using a nanohole created on a gold substrate. Furthermore, we show that the DNA of different lengths can be differentiated through the measurement of scattering signals leading to possible new DNA sensor applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here