z-logo
open-access-imgOpen Access
Enhancing the isotropy of lateral resolution in coherent structured illumination microscopy
Author(s) -
Joo Hyun Park,
Jae Yong Lee,
Eun Seong Lee
Publication year - 2014
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.5.001895
Subject(s) - optics , resolution (logic) , isotropy , image resolution , physics , spatial frequency , anisotropy , fourier transform , microscopy , orientation (vector space) , computer science , geometry , mathematics , artificial intelligence , quantum mechanics
We present a method to improve the isotropy of spatial resolution in a structured illumination microscopy (SIM) implemented for imaging non-fluorescent samples. To alleviate the problem of anisotropic resolution involved with the previous scheme of coherent SIM that employs the two orthogonal standing-wave illumination, referred to as the orthogonal SIM, we introduce a hexagonal-lattice illumination that incorporates three standing-wave fields simultaneously superimposed at the orientations equally divided in the lateral plane. A theoretical formulation is worked out rigorously for the coherent image formation with such a simultaneous multiple-beam illumination and an explicit Fourier-domain framework is derived for reconstructing an image with enhanced resolution. Using a computer-synthesized resolution target as a 2D coherent sample, we perform numerical simulations to examine the imaging characteristics of our three-angle SIM compared with the orthogonal SIM. The investigation on the 2D resolving power with the various test patterns of different periods and orientations reveal that the orientation-dependent undulation of lateral resolution can be reduced from 27% to 8% by using the three-angle SIM while the best resolution (0.54 times the resolution limit of conventional coherent imaging) in the directions of structured illumination is slightly deteriorated by 4.6% from that of the orthogonal SIM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here