Open Access
Law of cooling, heat conduction and Stefan-Boltzmann radiation laws fitted to experimental data for bones irradiated by CO2 laser
Author(s) -
Luc Lévesque
Publication year - 2014
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.5.000701
Subject(s) - thermal conduction , atmospheric temperature range , law , thermodynamics , rate equation , boltzmann constant , range (aeronautics) , heat equation , materials science , physics , mechanics , classical mechanics , kinetics , quantum mechanics , political science , composite material
The rate of cooling of domesticated pig bones is investigated within the temperature range of 20°C-320°C. Within the afore-mentioned temperature range, it was found that different behaviors in the rate of cooling were taking place. For bones reaching a temperature within the lower temperature range of 20°C-50°C, it was found that the rate of cooling is mostly governed by the empirical Newton's law of cooling. It is also shown that a transition is taking place somewhere within 50°C-100°C, where both the heat conduction equation and Newton's law apply. As bones can be raised at a fairly high temperature before burning, it was found that the rate of cooling within the range 125°C-320°C is mostly behaving according to the heat conduction equation and Stefan-Boltzmann radiation law. A pulsed CO2 laser was used to heat the bones up to a given temperature and the change of temperature as a function of time was recorded by non-contact infrared thermometer during the cooling period.