z-logo
open-access-imgOpen Access
Multi-perspective label based deep learning framework for cerebral vasculature segmentation in whole-brain fluorescence images
Author(s) -
yuxin li,
Tong Ren,
Junhuai Li,
Xiangning Li,
Anan Li
Publication year - 2022
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.458111
Subject(s) - artificial intelligence , computer science , segmentation , deep learning , convolutional neural network , pattern recognition (psychology) , artificial neural network , computer vision
The popularity of fluorescent labelling and mesoscopic optical imaging techniques enable the acquisition of whole mammalian brain vasculature images at capillary resolution. Segmentation of the cerebrovascular network is essential for analyzing the cerebrovascular structure and revealing the pathogenesis of brain diseases. Existing deep learning methods use a single type of annotated labels with the same pixel weight to train the neural network and segment vessels. Due to the variation in the shape, density and brightness of vessels in whole-brain fluorescence images, it is difficult for a neural network trained with a single type of label to segment all vessels accurately. To address this problem, we proposed a deep learning cerebral vasculature segmentation framework based on multi-perspective labels. First, the pixels in the central region of thick vessels and the skeleton region of vessels were extracted separately using morphological operations based on the binary annotated labels to generate two different labels. Then, we designed a three-stage 3D convolutional neural network containing three sub-networks, namely thick-vessel enhancement network, vessel skeleton enhancement network and multi-channel fusion segmentation network. The first two sub-networks were trained by the two labels generated in the previous step, respectively, and pre-segmented the vessels. The third sub-network was responsible for fusing the pre-segmented results to precisely segment the vessels. We validated our method on two mouse cerebral vascular datasets generated by different fluorescence imaging modalities. The results showed that our method outperforms the state-of-the-art methods, and the proposed method can be applied to segment the vasculature on large-scale volumes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here