Optical-force-controlled red-blood-cell microlenses for subwavelength trapping and imaging
Author(s) -
Xixi Chen,
Heng Li,
Tianli Wu,
Zhiyong Gong,
Jinghui Guo,
Yuchao Li,
Baojun Li,
Pietro Ferraro,
Yao Zhang
Publication year - 2022
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.457700
Subject(s) - microlens , optics , materials science , focal length , optical power , optical tweezers , magnification , laser , optoelectronics , lens (geology) , physics
We demonstrate that red blood cells (RBCs), with an adjustable focusing effect controlled by optical forces, can act as bio-microlenses for trapping and imaging subwavelength objects. By varying the laser power injected into a tapered fiber probe, the shape of a swelled RBC can be changed from spherical to ellipsoidal by the optical forces, thus adjusting the focal length of such bio-microlens in a range from 3.3 to 6.5 µm. An efficient optical trapping and a simultaneous fluorescence detecting of a 500-nm polystyrene particle have been realized using the RBC microlens. Assisted by the RBC microlens, a subwavelength imaging has also been achieved, with a magnification adjustable from 1.6× to 2×. The RBC bio-microlenses may offer new opportunities for the development of fully biocompatible light-driven devices in diagnosis of blood disease.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom