z-logo
open-access-imgOpen Access
Deep neural network classification of in vivo burn injuries with different etiologies using terahertz time-domain spectral imaging
Author(s) -
Omar B. Osman,
Zachery B. Harris,
Mahmoud E. Khani,
Juin W. Zhou,
Andrew Chen,
Adam J. Singer,
M. Hassan Arbab
Publication year - 2022
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.452257
Subject(s) - terahertz radiation , hyperspectral imaging , artificial intelligence , terahertz spectroscopy and technology , computer science , scanner , deep learning , artificial neural network , pattern recognition (psychology) , optics , materials science , biomedical engineering , medicine , optoelectronics , physics
Thermal injuries can occur due to direct exposure to hot objects or liquids, flames, electricity, solar energy and several other sources. If the resulting injury is a deep partial thickness burn, the accuracy of a physician's clinical assessment is as low as 50-76% in determining the healing outcome. In this study, we show that the Terahertz Portable Handheld Spectral Reflection (THz-PHASR) Scanner combined with a deep neural network classification algorithm can accurately differentiate between partial-, deep partial-, and full-thickness burns 1-hour post injury, regardless of the etiology, scanner geometry, or THz spectroscopy sampling method (ROC-AUC = 91%, 88%, and 86%, respectively). The neural network diagnostic method simplifies the classification process by directly using the pre-processed THz spectra and removing the need for any hyperspectral feature extraction. Our results show that deep learning methods based on THz time-domain spectroscopy (THz-TDS) measurements can be used to guide clinical treatment plans based on objective and accurate classification of burn injuries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here