z-logo
open-access-imgOpen Access
Lock-in functional near-infrared spectroscopy for measurement of the haemodynamic brain response
Author(s) -
Stanisław Wojtkiewicz,
Karolina Bejm,
Adam Liebert
Publication year - 2022
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.448038
Subject(s) - functional near infrared spectroscopy , haemodynamic response , diffuse optical imaging , spectroscopy , optics , near infrared spectroscopy , neuroscience , computer science , biomedical engineering , nuclear magnetic resonance , materials science , medicine , physics , psychology , heart rate , tomography , cognition , prefrontal cortex , quantum mechanics , blood pressure
Here we show a method of the lock-in amplifying near-infrared signals originating within a human brain. It implies using two 90-degree rotated source-detector pairs fixed on a head surface. Both pairs have a joint sensitivity region located towards the brain. A direct application of the lock-in technique on both signals results in amplifying common frequency components, e.g. related to brain cortex stimulation and attenuating the rest, including all components not related to the stimulation: e.g. pulse, instrumental and biological noise or movement artefacts. This is a self-driven method as no prior assumptions are needed and the noise model is provided by the interfering signals themselves. We show the theory (classical modified Beer-Lambert law and diffuse optical tomography approaches), the algorithm implementation and tests on a finite element mathematical model and in-vivo on healthy volunteers during visual cortex stimulation. The proposed hardware and algorithm complexity suit the entire spectrum of (continuous wave, frequency domain, time-resolved) near-infrared spectroscopy systems featuring real-time, direct, robust and low-noise brain activity registration tool. As such, this can be of special interest in optical brain computer interfaces and high reliability/stability monitors of tissue oxygenation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom