
Polarization properties of retinal blood vessel walls measured with polarization sensitive optical coherence tomography
Author(s) -
Hadi Afsharan,
Michael J. Hackmann,
Qiang Wang,
Farzaneh Navaeipour,
Stephy V.K. Jayasree,
Robert J. Zawadzki,
Dilusha Silva,
Chulmin Joo,
Barry Cense
Publication year - 2021
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.426079
Subject(s) - optical coherence tomography , retinal , birefringence , materials science , optics , repeatability , optic nerve , nerve fiber layer , biomedical engineering , tomography , anatomy , ophthalmology , medicine , physics , chemistry , chromatography
A new method based on polarization-sensitive optical coherence tomography (PS-OCT) is introduced to determine the polarization properties of human retinal vessel walls, in vivo . Measurements were obtained near the optic nerve head of three healthy human subjects. The double pass phase retardation per unit depth (DPPR/UD), which is proportional to the birefringence, is higher in artery walls, presumably because of the presence of muscle tissue. Measurements in surrounding retinal nerve fiber layer tissue yielded lower DPPR/UD values, suggesting that the retinal vessel wall tissue near the optic nerve is not covered by retinal nerve fiber layer tissue (0.43°/µm vs. 0.77°/µm, respectively). Measurements were obtained from multiple artery-vein pairs, to quantify the different polarization properties. Measurements were taken along a section of the vessel wall, with changes in DPPR/UD up to 15%, while the vessel wall thickness remained relatively constant. A stationary scan pattern was applied to determine the influence of involuntary eye motion on the measurement, which was significant. Measurements were also analyzed by two examiners, with high inter-observer agreement. The measurement repeatability was determined with measurements that were acquired during multiple visits. An improvement in accuracy can be achieved with an ultra-broad-bandwidth PS-OCT system since it will provide more data points in-depth, which reduces the influence of discretization and helps to facilitate better fitting of the birefringence data.