
Weakly supervised serous retinal detachment segmentation in SD-OCT images by two-stage learning
Author(s) -
Ruiwen Xing,
Sijie Niu,
Xizhan Gao,
Tingting Liu,
Wen Fan,
Yuehui Chen
Publication year - 2021
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.416167
Subject(s) - computer science , artificial intelligence , segmentation , convolutional neural network , deep learning , pattern recognition (psychology) , pixel , image segmentation , computer vision
Automated lesion segmentation is one of the important tasks for the quantitative assessment of retinal diseases in SD-OCT images. Recently, deep convolutional neural networks (CNN) have shown promising advancements in the field of automated image segmentation, whereas they always benefit from large-scale datasets with high-quality pixel-wise annotations. Unfortunately, obtaining accurate annotations is expensive in both human effort and finance. In this paper, we propose a weakly supervised two-stage learning architecture to detect and further segment central serous chorioretinopathy (CSC) retinal detachment with only image-level annotations. Specifically, in the first stage, a Located-CNN is designed to detect the location of lesion regions in the whole SD-OCT retinal images, and highlight the distinguishing regions. To generate available a pseudo pixel-level label, the conventional level set method is employed to refine the distinguishing regions. In the second stage, we customize the active-contour loss function in deep networks to achieve the effective segmentation of the lesion area. A challenging dataset is used to evaluate our proposed method, and the results demonstrate that the proposed method consistently outperforms some current models trained with a different level of supervision, and is even as competitive as those relying on stronger supervision. To our best knowledge, we are the first to achieve CSC segmentation in SD-OCT images using weakly supervised learning, which can greatly reduce the labeling efforts.