
Multiple-pulse damage thresholds of retinal explants in the ns-time regime
Author(s) -
Scarlett Lipp,
Sebastian Kotzur,
Philipp Elmlinger,
Wilhelm Stork
Publication year - 2020
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.412012
Subject(s) - irradiation , pulse (music) , laser , optics , materials science , retinal , biophysics , biomedical engineering , chemistry , biology , physics , medicine , detector , nuclear physics , biochemistry
The data situation of laser-induced damage measurements after multiple-pulse irradiation in the ns-time regime is limited. Since the laser safety standard is based on damage experiments, it is crucial to determine damage thresholds. For a better understanding of the underlying damage mechanism after repetitive irradiation, we generate damage thresholds for pulse sequences up to N = 20 000 with 1.8 ns-pulses using a square-core fiber and a pulsed Nd:YAG laser. Porcine retinal pigment epithelial layers were used as tissue samples, irradiated with six pulse sequences and evaluated for damage by fluorescence microscopy. The damage thresholds decreased from 31.16 µJ for N = 1 to 11.56 µJ for N = 20 000. The reduction indicates photo-chemical damage mechanisms after reaching a critical energy dose.