
Multi-beam OCT imaging based on an integrated, free-space interferometer
Author(s) -
Yongjoo Kim,
Norman Lippok,
Benjamin J. Vakoc
Publication year - 2020
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.408703
Subject(s) - optical coherence tomography , optics , interferometry , beam splitter , computer science , beam (structure) , preclinical imaging , materials science , physics , laser , in vivo , biology , microbiology and biotechnology
While it is a common practice to increase the speed of swept-source optical coherence tomography (OCT) systems by using a high-speed source, this approach may not always be optimal. Parallelization in the form of multiple imaging beams is an alternative approach, but scalable and low-loss multi-beam OCT architectures are needed to capitalize on its advantages. In this study, we demonstrate an eight-beam OCT system using an interferometer architecture comprising planar lightwave circuits (PLC) splitters, V-groove assemblies (VGA), and optical ribbon fibers. We achieved an excess loss and heterodyne efficiency on each channel that was close to that of single-beam systems. In vivo structural imaging of a human finger and OCT angiography imaging of a mouse ear was performed to demonstrate the imaging performance of the system. This work provides further evidence supporting multi-beam architectures as a viable strategy for increasing OCT imaging speed.