Prospective detection of cervical dysplasia with scanning angle-resolved low coherence interferometry
Author(s) -
Wesley Y. Kendall,
Derek Ho,
Kengyeh K. Chu,
Michael J. Zinaman,
Daryl Wieland,
Kandis Moragne,
Adam Wax
Publication year - 2020
Publication title -
biomedical optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.401000
Subject(s) - medicine , optical coherence tomography , dysplasia , prospective cohort study , cervical cancer , radiology , interferometry , cervix , pathology , optics , cancer , physics
We present a prospective clinical study using angle-resolved low-coherence interferometry (a/LCI) to detect cervical dysplasia via depth resolved nuclear morphology measurements. The study, performed at the Jacobi Medical Center, compares 80 a/LCI optical biopsies taken from 20 women with histopathological tissue diagnosis of co-registered physical biopsies. A novel instrument was used for this study that enables 2D scanning across the cervix without repositioning the probe. The main study goal was to compare performance with a previous clinical a/LCI point-probe instrument [Int. J. Cancer140, 1447 (2017)] and use the same diagnostic criteria as in that study. Tissue was classified in two schemes: non-dysplastic vs. dysplastic and low-risk vs. high-risk, with the latter classification aligned with clinically actionable diagnosis. High sensitivity (non-dysplastic vs. dysplastic: 0.903, low-risk vs. high-risk: 1.000) and NPV (0.930 and 1.000 respectively) were obtained when using the previously established decision boundaries, showing the success of the scanning a/LCI instrument and reinforcing the clinical viability of a/LCI in disease detection.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom