End-to-end Res-Unet based reconstruction algorithm for photoacoustic imaging
Author(s) -
Jinchao Feng,
Jianguang Deng,
Zhe Li,
Zhonghua Sun,
Huijing Dou,
Kebin Jia
Publication year - 2020
Publication title -
biomedical optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.362
H-Index - 86
ISSN - 2156-7085
DOI - 10.1364/boe.396598
Subject(s) - algorithm , computer science , photoacoustic imaging in biomedicine , inverse problem , residual , imaging phantom , iterative reconstruction , regularization (linguistics) , artificial intelligence , mathematics , optics , physics , mathematical analysis
Recently, deep neural networks have attracted great attention in photoacoustic imaging (PAI). In PAI, reconstructing the initial pressure distribution from acquired photoacoustic (PA) signals is a typically inverse problem. In this paper, an end-to-end Unet with residual blocks (Res-Unet) is designed and trained to solve the inverse problem in PAI. The performance of the proposed algorithm is explored and analyzed by comparing a recent model-resolution-based regularization algorithm (MRR) with numerical and physical phantom experiments. The improvement obtained in the reconstructed images was more than 95% in pearson correlation and 39% in peak signal-to-noise ratio in comparison to the MRR. The Res-Unet also achieved superior performance over the state-of-the-art Unet++ architecture by more than 18% in PSNR in simulation experiments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom